
Istrobotics
Robotour 2020, 3.2.2021
Pavol Boško, Radoslav Kováč

2007 2008 2009 2014 2015

2016 2017 2018 2019 2020

ROBOT CHASSIS

• RC model: Traxxas E-Maxx 4x4 monster truck

• Top Speed: 48 km/h

• Waterproof electronics, servos

HARDWARE
HW Component Price

Chassis: Traxxas E-Maxx 3903
• Two Speed Conversion Kit, Gear, Shock Set...

440 Eur

Jetson Nano: 1.4GHz 4-core, 4GB RAM, 64GB SD
• Arduino Mega: 16MHz, 8KB RAM
• 2x Arduino Nano: 16MHz, 2KB RAM
• Arduino Pro Mini: 16MHz, 2KB RAM

200 Eur

Depth Camera: Intel RealSense D435
• 2019: Odroid oCam 5MP (640x480, 170 FOV)
• 2018: Odroid USB Cam (640x480, 65 FOV)

260 Eur

2D Lidar: RoboPeak RPLIDAR 360, 7Hz, 1° res.
• 2019: Sick TiM571, 15Hz, 0.3° res. ($2400)

100 Eur

GPS/Glonass receiver: Holux M-215+ 40 Eur

Compass: Bosch BNO055 40 Eur

Baterries: 2x Antix HV-LiPo 9000 mAh, 7.6V 160 Eur

Ultrasonic Distance Sensor: 5x Sonar: HC - SR04 10 Eur

Other: LCD & OLED displays, 8x LED, Wireless NIC… 50 Eur

TOTAL 1 300 Eur

VISION (2016 – 2019)
Pixel color classification

• Our old approach:

• Classify every pixel as: road / off-road (grass)

• Manually chosen samples (32x32 pixels)

• Find nearest cluster in HSV color space

• Lookup-table could be used: RGB -> class

• Disadvantages:

• Adding more samples to improve the result
was more and more challenging

• brown leaves (in autumn) could not be
distinguished from road

…IMAGE SEQUENCE #1

NEURAL NETWORKS at Robotour

• 2014 – Smelý Zajko (SK), Plecharts (CZ)

• first robots with neural networks

• 2016 – JECC (DE)

• first convolutional neural network (CNN)

• 2019 – Smelý Zajko (SK)

• https://github.com/Adman/road-segmentation

• Adrián Matejov, Master’s Thesis 2020 [1]

• Jetson TX2: Tensorflow, Keras, Python

• ResNet: 2,7mil params (33 MB), 240ms prediction

• 2 datasets: 677 images, Lednice + Deggendorf

• 2020 – we used NN from Smelý Zajko

• Jetson Nano is 2x slower than Jetson TX2

• ResNet (f=4): 179.297 params, 200ms prediction

• TCP between Python server and C++ client

https://github.com/Adman/road-segmentation

AI ACCELERATOR HARDWARE –
Google, Intel and NVIDIA [2]

IMPROVING THE DATASET

• What to improve?

• Imperfect predictions on training images

• grass-only images are missing in training set

• images with walls are rare

• test in different parks / locations / season

• Our database of driving data (logs, images)

• 14 different parks (7x Bratislava, 3x CZ, 1x DE)

• 50 driving days, 400 attempts

• 500.000 images, 220GB data

• Identifying new images for labeling – our approach:

• let the NN process images from past competitions

• then manually select images with bad predictions

• manually label / annotate new images

• start NN training again

LABELING - PixelAnnotationTool

• PixelAnnotationTool

• manually provide markers with brushes

• then launch the algorithm

• refine/correct the markers

• markers are stored as separate images

• Implements OpenCV watershed algorithm

• marker-based image segmentation

• https://github.com/abreheret/PixelAnnotationTool

https://github.com/abreheret/PixelAnnotationTool

HOW TO ANNOTATE?

• More categories – more time for labeling

• 2 categories: 90-120 sec / image

• 10 categories: 180-600 sec / image

• What is the definition of “road”?

• how about stairs? holes? filled with water?

• curbs? seen from top? separate roads?

• grass on road vs moss

• definition: drivable from the robot position(?)

OUR TRAINING DATASET

• We annotated 540 new images (road/noroad):

• CZ, Písek, Palackého Sady: 103 images

• SK, Bratislava, Sad Janka Kráľa: 206 images

• SK, Bratislava, Park Andreja Hlinku: 106 images

• https://github.com/lnx-git/istro-rt

• dataset\image, dataset\masks

• incl. 2 datasets created by Smelý Zajko (677x)

• Data augmentation for NN training

• blur

• contrast

• horizontal flip

• crop: scale 3/4 + shift (top/bottom, left/right)

• grayscale

• positive effect – needs to be further evaluated [3]

https://github.com/lnx-git/istro-rt

NEURAL NETWORK RESULTS

• Works nice

• autumn colors are no longer a challenge

• good(?) performance with grayscale images

• Ready for "Klondajk" (Robotour 2020)?

• problems with grass on concrete roads

• Grass covered with snow?

• No way – snow makes it impossible to find road

• additional training images will be needed

DEPTH CAMERA: Intel RealSense D435

• Intel RealSense D435 features

• Color Camera Horizontal FOV: 69°, 1920x1080

• Depth HD Horizontal FOV: 87° , 1280x720

• IR Projector - to improve depth accuracy in
scenes with low texture

• We process images in these resolutions:

• RGB: 640x480

• Depth: 848x480

• Other depth camera alternatives:

• Stereolab ZED Mini, 400+ Eur,
includes precise IMU for positional
tracking (Smelý Zajko)

DEPTH IMAGE PROCESSING

• Detecting obstacles and holes in the road

• take two pixels: (x, y) and (x, y+8)

• calculate the difference between
the depth values of these two pixels

• divide by the depth value of the second pixel

• compare with min and max linear boundary

• Processing time (848x480): 45 ms / image

…IMAGE SEQUENCE #2

Robotour Marathon – 13.12.2020, 3.95km

• In 2020 we finally implemented

• wrong-way behavior

• full-stop (based on vision)

• Problems

• wrong turns at crossroads

• sun and water are causing image processing
issues

• roads made of concrete panels

• grass paver system

• High-capacity batteries are needed to drive
in winter

• we also have a tablet in case the laptop's battery
runs out

SOFTWARE

• Operating system: Ubuntu 18.04 (Linux4Tegra)

• Source codes: C++, 707kB

• 2019: 664kB, 2018: 430kB,

• 2017: 340kB, 2016: 180kB

• NN: Tensorflow, Keras, Python

• Libraries:

• OpenCV (vision), GeographicLib (Geo),

• Zbar (QR-Codes), Libxml2 (.osm),

• log4cxx (logging)

• Main application + 8x pthreads

• 4x sensors (Camera, Lidar, GPS , Compass)

• image capturing + vision processing

• output: image saving (1GB of data/ round)

• control board (Compass)

SOURCE CODES

• Sources codes are available at GitHub
as public project Istro RT:

https://github.com/lnx-git/istro-rt

REFERENCES

• [1] Adrián Matejov, Efficient Convolutional Neural Networks Recognizing Driveable Trails, Master’s Thesis 2020

• https://github.com/Adman/master-thesis/blob/master/efficient-cnns-recognizing-driveable-trails.pdf

• [2] Alasdair Allan: Benchmarking Edge Computing: Comparing Google, Intel, and NVIDIA accelerator hardware

• https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245

• [3] Matt Cooper: When Conventional Wisdom Fails: Revisiting Data Augmentation for Self-Driving Cars

• https://towardsdatascience.com/when-conventional-wisdom-fails-revisiting-data-augmentation-for-self-driving-
cars-4831998c5509

https://github.com/Adman/master-thesis/blob/master/efficient-cnns-recognizing-driveable-trails.pdf
https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245
https://towardsdatascience.com/when-conventional-wisdom-fails-revisiting-data-augmentation-for-self-driving-cars-4831998c5509

THANK YOU

GENERAL SLIDES

HARDWARE DESIGN

Jetson Nano vs Odroid-XU4

Raspberry Pi3 Odroid-XU4 Jetson Nano

CPU ARM
Cortex-A53

Samsung
Exynos5422

Cortex

ARM
Cortex-A57

Clock 1.2 GHz 2 GHz 1,43 Ghz

Cores 4x 8x 4x

RAM 1GB LPDDR2 2GB LPDDR3 4GB LPDDR4

Flash microSD eMMC5.0
HS400

microSDXC
Class 10 UHS-I

Ethernet 10/100 Mbit 1 Gigabit 1 Gigabit

USB 4× USB 2.0 2x USB 3.0
1x USB 2.0

4x USB 3.0

R-Pi3 O-XU4 J-Nano

Image
processing

167,3
ms

39,4
ms

27,3
ms

JPG/PNG
writing

55
ms

17,7
ms

8,1
ms

Processing
lag

2 sec 100 ms 0 ms
(ramdisk)

GPS GROUND PLANE

• U-Blox GPS Antenna documentation

• Patch antennas - flat surface is ideal

• can show very high gain, if mounted
on large ground plane (70x70mm)

• USB 3.0 impact on GPS

• Intel paper: USB 3.0* Radio Frequency
Interference Impact on 2.4 GHz Wireless
Devices

• We used simple shield for GPS

• Results: great improvement (3m accuracy)

170FOV CAMERA

• oCam : 5MP USB 3.0 Camera

• OmniVision OV5640 CMOS image sensor

• Original lens Field Of View: 65 Degree

• Exchangeable Standard M12 Lens

• Separate: 170 Degree Wide Angle

• (standard accessory also for GoPro cameras)

• we 3d-printed an adjustable camera holder
(fixed by screws)

• we broke the USB connector during
the first test drive

SOFTWARE DESIGN – PROCESSING

UPDATE_GRID – VISION output
UPDATE_GRID – LIDAR data

READ_SENSOR_DATA – gps, compass

Calculate NAVIGATION ANGLE

CHECK_GRID for obstacles

COMPASS_CALIBRATION

WRONG_WAY behavior

OBSTACLE_AVOIDANCE – min/max

NAVIGATION

every 20ms CAMERA capture – 30 fps

LIDAR data capture – 15 Hz

VISION processing – 28 ms

GPS data capture

CONTROL BOARD comm.

SAVE images to disk – 3x /sec

LIDAR – obstacle detection

• Obstacle detection condition (red):

• If distance is < 100 cm

• Filtering: distance < 1cm (grey)

• Stop condition (pink):

• Check angle: -45 to +45 degrees

• If distance is < 50 cm at 3 diff. degs

• Sonars were also used (rain issue)

• Obstacle avoidance (green/white)

• Find OK intervals of > 20 degrees

• Choose the closest to going straight

VISION – approach

• Our approach: lidar-like local map

• For any seen angle is obstacle closer
than 1 meter?

• 1 meter or to the image border

• Algorithm:

• Pixel color classification

• Evaluate grid points

• Calculate distance to obstacle

• Find OK intervals – same like LIDAR

VISION – Pixel color classification

• Approach:

• Choose sample pixel blocks (32x32)
from training images

• Calculate 4 clusters centers in color
space (OpenCV kmeans)

• Calculate cluster radius (histogram
based)

• Repeat for 2 classifiers : road and
off-road (grass)

• HSV color space + Euclidian distance

• tool to evaluate images and to
select sample blocks

VISION – Algorithm

• Pixel color classification - 4 results:

• Road (red)

• Off-road (blue)

• Both (green)

• None (grey)

• Evaluate grid points

• Cca 1000 points in 37 lines (5 deg)

• Evaluating nearby pixels (80x80)

• Majority of “Road” pixels is checked

• Calculate distance to obstacle

• Find OK intervals + merge with LIDAR

FISHEYE IMAGE PROCESSING

• image transformation

• correction of mapping between XY points and
local map coordinates – curved lines

• OpenCV undistort() was not used (because of
slow performance)

• front side of the robot on every image

• was fixed by SW masking

• presents an issue for training a neural network

• sky was “masked” using a black tape

• for avoiding white ballancing camera issues

VISION - ROBOORIENTEERING

• Vision algorithm was modified to detect
orange cones

NAVIGATION – ROUTE PLANNING

• OpenStreetMap data export

• filter segments: footway, track with <grade3

• Dijkstra's Shortest Path Algorithm

• 418 nodes, 504 segments

• Performance: < 2ms

• Visualisation: kml export, cpp export

• Navigation: keep azimuth towards a point
that is 10m along planned route

COMPASS ISSUES

• Compass vs GPS calibration:

• interval of 7 seconds - robot is moving straight

• gps and compass azimuths to be fixed

• could be performed every 30 seconds – 3 minutes

• Issues:

• after Round #1 very inaccurate results –
delta values between 45° and 90 °

• robot is sometimes slightly left turning

• local changes during the day (bridge)

• for testing in Bratislava and also for competition
we used fixed value 60 °

QR CODES

• ZBar bar code reader

• open source software suite

• supports: EAN-13/UPC-A, UPC-E, EAN-8, Code
128, Code 39, Interleaved 2 of 5 and QR Code

• Performance impact:

• one execution: 50-200ms

• our target 30-50ms per frame

• Solution: images are scanned for QR codes
only when waiting for navigation coordinates

WORLD MAP – BUILDING LOCAL GRID

• Local grid map

• to store polar information from lidar and vision

• 1 cell: 10 x 10 cm, 1 byte pre cell, array[2000][2000]

• always overwriting with new data - no heatmap

• Local position taken from GPS + odometry

• wheel encoders provide speed information

• Colors used for visualization

• Blue – grass (not-a-road) detected

• Red – lidar obstacle

• Green - no obstacle (light green = both sensors)

VISUALISATION

• Visualization in web browser

• works on notebook/tablet/phone

• Messages from log files

• last set of lines matching selected substrings

• Info: robot display, gps, processing, calibration

• Log parser is exporting interesting data do .json file

• Web page performs Ajax JSON requests every 1 sec

• Images are only downloaded on demand (checkbox)

