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Talk Outline

● our general approach
● vision & language mapping

○ neural module networks
● visuomotor mapping 

○ myGym
○ variational autoencoders

● connecting vision, language and motorics
○ future plans
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Developmental Robotics

● cognitive robotics - make AI/robots that are autonomous 
and able to learn, plan complex tasks and communicate

● developmental robotics - inspired by human brain 
development in early childhood 
○ motor babbling → object manipulation
○ understanding speech → actively using it 
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Developmental Robotics

General concepts:

● robots that learn universal skills



6

Developmental Robotics

General goals:

● compositionality

vs.
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Developmental Robotics

General goals:

● explainability
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Developmental Robotics

General goals:

● intrinsic motivation & world exploration
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Vision & Language 
Mapping
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Visual Question Answering (VQA)

● benchmark task for visual reasoning
● VQA real-world dataset

○ requires understanding of image content ?

Images from Antol et al, 2015
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VQA dataset - problem

● dataset bias -  no image needed, same answers for different 
questions, jumping to conclusions
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= synthetic, well-annotated dataset with minimal bias

Solution: CLEVR dataset



13Images taken from Johnson, J. et al., 2017
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● compositional and explainable
● question translated into a sequence of logical 

operations
● individual network for each operation

Neural Module Networks

Image from Hu et al., 2017 Image from Mascharka et al., 2018
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+ compositional
+ interpretable
-  logically inconsistent

                     (counting mainly)

Neural Module Networks

Sejnova et al., 2018
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● trained on custom, systematic set of questions for each image (How 
many…?)

● trained on original CLEVR dataset (CLEVR-COUNT) and adapted GYM 
dataset (GYM-COUNT)

● tested also on real-world data

Improving Consistency

Sejnova et al., 2019
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● retraining on our adapted version of CLEVR (COUNT 
dataset) increased accuracy and consistency for 
counting

Improving Consistency

Sejnova et al., 2019
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Visuomotor 
Mapping
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myGym
● modular toolkit for visuomotor robotic tasks
● real-time simulation with PyBullet Physics
● modular across workspaces, robots, tasks, reward types, objects 

and baselines
● deep reinforcement learning of (visuo)motor skills - supervised, 

semi-supervised and unsupervised

https://github.com/incognite-lab/myGym

https://github.com/incognite-lab/myGym


20

myGym

● robots:
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myGym

● manipulation tasks: 
○ reach
○ push
○ pick and place
○ throw
○ catch
○ navigate…
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myGym

● RL network baselines:
○ PPO
○ PPO2
○ SAC
○ HER
○ TRPO
○ DDPG
○ ...
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myGym

● RL network baselines:
○ PPO
○ PPO2
○ SAC
○ HER
○ TRPO
○ DDPG
○ ...
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● pretrained visual networks
○ YOLACT - convolutional network for instance 

segmentation
○ detected objects positions - observation and reward 

calculation

myGym
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● pretrained visual networks
○ YOLACT - convolutional network for instance 

segmentation
○ possible to train on own dataset - code for generation 

included

myGym
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● pretrained visual networks
○ variational autoencoder (VAE)  - a probabilistic version of 

autoencoders

myGym
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● continuous latent space - possible to generate new 
samples

Variational Autoencoder
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Variational Autoencoder

source

https://github.com/YannDubs/disentangling-vae
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Variational Autoencoder

● VAEs can generate new data
○ only in case the latent space is regularised (organised)

● what is regularity?
○ completeness and continuity of the latent space
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Variational Autoencoder

● training process - we maximize the Evidence Lower 
Bound (ELBO)
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● usage:
○ compressed image representation
○ reward calculation - Euclidean 

distance between latent vectors
○ goal generation - unsupervised 

learning

Variational Autoencoder
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Connecting Vision, 
Language and 

Motorics
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● inputs: natural language command, scene image
● output: robot motion
 

Compositional 
Actions
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Compositional Actions



35

Conclusion
● learning individual motor skills (reach, push, pull, rotate…)
● chaining learned action primitives based on natural 

language command/goal image and scene image
○ compositional
○ explainable?
○ image / sentence representation using a variational 

autoencoder -> possible goal generation 
(unsupervised scenario)
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Thank You!
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