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® oOur general approach
e Vvision & language mapping
o neural module networks
® Vvisuomotor mapping
o myGym
o variational autoencoders
® connecting vision, language and motorics
o future plans
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® cognitive robotics - make Al/robots that are autonomous
and able to learn, plan complex tasks and communicate
e developmental robotics - inspired by human brain
development in early childhood
© motor babbling = object manipulation
o understanding speech = actively using it




Developmental Robotics

General concepts:

® robots that learn universal skills
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General goals:

blue

e compositionality

What color is the thing with the
same size as the blue cylinder?

VS.

There is a shiny object that is right of the gray metallic cylinder;
does it have the same size as the large rubber sphere?

Layout policy find F find ]— relocate filterlo compare
find
compare
large
e find I Inuau Filter =
gray right of shimy
metallic
eylinder y e s

Module Network




Developmental Robotics

General goals: Input — JNYLE:)E — Output
e cxplainability

The goal of explainable Al

Today
This is
®© 6016
Training Learning Learned Output User with
Data Process Function a Task
Tomorrow
OO EE 6

Training  New Learning Explainable Explainable Interface User with
Data Process Model a Task



General goals:

e intrinsic motivation & world exploration
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Vision & Language
Mapping
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e benchmark task for visual reasoning
e VQA real-world dataset
o requires understanding of image content ?

What color are her eyes? How many slices of pizza are there?
What is the mustache made of? Is this a vegetarian pizza?

Images from Antol et al, 2015
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e dataset bias - no image needed, same answers for different

questions, jumping to conclusions

Correct Response Incorrect Responses
Q: How many zehras
Predicted A: 2 Predicted A: 2 Predicted A: 2 Predicted A: 2

All Correct Responses

0: What covers the ground

Predicted A: show Predicted A: snow Predicted A:show  Predicted A: snow Predicted A: snow
A | 3 ‘ r i,

11



CTU

e Solution: CLEVR dataset

UNIVERSITY
IN PRAGUE

= synthetic, well-annotated dataset with minimal bias

{“color”: “green”,
“size”: "“large”,
“rotation”: 156.34024,
“shape”: “cylinder”,
“3D_coords”: [...],
“material”: “metal”,
“pixel_coords”: [...]}

12
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Questions in CLEVR test various aspects of
visual  reasoning including attribute
identification, counting, comparison,
spatial relationships, and logical
operations.

Each question in CLEVR is represented both in natural
language and as a functional program_The functional
program representation allows for precise determination of
the reasoning skills required to answer each question.

Sample chain-structured question: CLEVR function catalog

VAIUL e

i
Objects s—p s

) 2 ODJECES m——ie 2
yellow sphere right cube — OD|ECLS
What color is the cube to the right of the yellow sphere? o/

no

number

Sample tree-structured question: > H—> value

VAIUE w5 y

NUMBDET e g
E

Q: Are there an equal number of large things and metal
spheres?

yes/no

nuMber =i LLASS 7

Q: What size is the cylinder that is left of the brown object ——+ [SHRUESIEIEP —* Objects
metal thing that is left of the big sphere? value —» S D chjects
Q: There is a sphere with the same size as the metal How oy cyllidars Gne o ont oL S ohyact=% y

cube: is it made of the same material as the small red thing and on the left side of the green object? Oblefts—'-—’“le“
sphere?

Q: How many objects are either small cylinders or red

things?

13
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compositional and explainable

question translated into a sequence of logical

operations

individual network for each operation

How many other things are of the
same size as the green matte ball?
1
I Question encoder (RNN) I

Question features ]

(
 S— :

I Layout policy (RNN) I

ayout prediction
(reverse Polish notation)

o
| oy

How many other things are of the
same size as the green matte ball?

How many other things are of the
same size as the green matte ball?

[0

Question attentions

>

>

Network builder

fq'in

relocate Module
le the same size as network
ﬂxa | Image encoder (CNN)
ul
e green matte ball '
4 /‘{ Image features J

Neural Module Networks

Question: What color is the big
object that is left of the large
metal sphere and right of the
green metal thing?

Attend
large

Attend Atu'ml\
metal green |

Att(-nd\ Alu.-n({
spheruJ metal |

Relate | | Relate
left right
7
\ /

\
\ 1/

Intersect

Attend
large

\
Query
Color

Answer: Red

14



CTU

e Neural Module Networks

UNIVERSITY
IN PRAGUE

+ compositional

+ interpretable

- logically inconsistent
(counting mainly)

Table 1. Comparison of results on the CLEVR dataset. N2NMN is the original model
from [9], N2NMN - COUNT and CONSISTENCY refers to our measured data for vir-
tual/real world scenario. The measured values are the percentage of correctly answered
questions from given category.

Method Overall Count Shape Material Color Size
LSTM 470 42,5 33.2 50.8 12.2 499
CNN+LSTM+SA 68.5 522 85 88 81 87

NMN 72.1 52.5 84.2 82.6 68.9 80.2
N2NMN 83.7 685 90.6 91.5 84.8 93.1
HUMAN 926 86.3 94.0 94.0 95.0 97.0
N2NMN - COUNT - VIRTUAL 75.1 81.3 &81.2 65.3 79.3 68.5
N2NMN - COUNT - ROBOT 419 39 65 39.5 49.9 16

N2NMN - COSISTENCY - VIRTUAL 0.7 - 58.3 46.1 5.0 498

N2NMN - CONSISTENCY - ROBOT 0 - 48.7  20.5 0 5.1
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trained on custom, systematic set of questions for each image (How
many...?)

trained on original CLEVR dataset (CLEVR-COUNT) and adapted GYM
dataset (GYM-COUNT)

tested also on real-world data

Fig. 2. Comparison between the datasets used in our study. The original
CLEVR dataset (left) with fixed viewport, a sample from our nine viewport
dataset generated using MuJoCo OpenAl environment and Unity render
(center) and an example of real-world scenes collected by ITWA Kuka LBR
7 robotic manipulator (right).

16
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Improving Consistency

retraining on our adapted version of CLEVR (COUNT
dataset) increased accuracy and consistency for
counting

2 color|[red

) L.‘:-

3 shape[sphere]
¥ &
> ' v (\

O color[green] "W O color[blue]

1 shape[cube] 2 shape[cylinder’

-
v ‘o"‘

" 1 color[yellow]

o - g,’.a.

-1 .
' . r color|{gra ' color| brown “» color| purple color|{cyan
‘}x‘ U’ﬁ ;.,' .g.a' 0 color[groy] © color[brown] " ¥ 2 colorfpurple] 1 [eyan]
| | Error . a - a’ - % - a
“e% “g® “g® ®°g
Train Test Count Count Count color
objects shapes
CLEVR COUNT 64.5 (56.1) 94.9 (57.1) 99.6 (62.9)
CLEVR GYM(3) 69.5 (35.6) 95.8 (63.1) 92.2 (37.6)
CLEVR ROBOT(3) 51:2°07:2) 84.5 (41.1) 87.3 (19.0)
COUNT COUNT 99.6 (974) 98.4 (97.5) 100 (99.4)
COUNT GYM(3) 97.0 (87.8) 99.1 (95.6) 98.4 (88.9)
COUNT ROBOT(3) 85.9 (55.2) 90.0 (71.8) 95.2 (64.4) 1 7



Visuomotor
Mapping
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myGym

modular toolkit for visuomotor robotic tasks

real-time simulation with PyBullet Physics

modular across workspaces, robots, tasks, reward types, objects
and baselines

deep reinforcement learning of (visuo)motor skills - supervised,
semi-supervised and unsupervised

https://github.com/incognite-lab/myGym

19
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Robot Type Gripper

Kuka IIWA arm magnetic
Franka-Emica arm two finger
Jaco arm arm two finger
UR-3 arm tactile gripper
UR-5 arm tactile gripper
UR-10 arm tactile gripper
Gummiarm arm passive palm
Reachy arm passive palm
Leachy arm passive palm
ReachyLeachy dualarm passive palms
ABB Yumi dualarm two finger
Pepper humanoid -

Thiago humanoid -

Atlas humanoid -

DOF

00 ' Ov| Ov | Ov | O | “ON | OV [N

N e
5 o
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® manipulation tasks:

O

O O O O O

reach

push

pick and place
throw

catch
navigate...

myGym

21



myGym

® RL network baselines:

O

O O O O O O

PPO
PPO2
SAC
HER
TRPO
DDPG

22



® RL network baselines:

O

O O O O O O

Learnability

PPO
PPO?2
SAC
HER
TRPO
DDPG

—— PPO2, 30.11 %
—— TRPO, 28.75 %
—— ACKTR, 27.50 %
—— SAC, 2743 %
—— PPO, 27.29 %

23
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e pretrained visual networks

o YOLACT - convolutional network for instance
segmentation

o detected objects positions - observation and reward
calculation

e kuka_gripper: 0.97" =
box: 0.99° s e

[

I

0 eSS hammer: 0.54EE..
; P — 2= M= P
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myGym

e pretrained visual networks
o YOLACT - convolutional network for instance
segmentation
O possible to train on own dataset - code for generation
included

25
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e pretrained visual networks
o variational autoencoder (VAE) - a probabilistic version of
autoencoders

encode > decode >
Inference Generative

Distribution
26
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e \/ariational Autoencoder

e continuous latent space - possible to generate new

samples

latent input
. input representation reconstruction
simple
autoencoders X z=-e(x) d(z)
latent sampled latent input
. input distribution representation reconstruction
variational
autoencoders X p(z|x) z~ p(z|x) d(z)

27
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https://github.com/YannDubs/disentangling-vae
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e \AEs can generate new data
o only in case the latent space is regularised (organised)

e what is regularity?
o completeness and continuity of the latent space

& Po':"‘-{'f"ovv\_*‘l\ge‘ F Q
WW‘Mﬁee
once decoded i
— D4
oinds in the
GQUSQ |&!P}W“\ﬁ} ¢
MMSW )
awo&éwéeé
MWWWW&

simillar once decoded

irregular latent space x V regular latent space

29



CTU

e \/ariational Autoencoder

IN PRAGUE

e training process - we maximize the Evidence Lower
Bound (ELBO)

* ELBO L~(x; 6, p) equals to E._.| , [log p(x | 2)] - KL(g(z | x) || p(2))
 1st term: ReconstructionLoss
» 27 term: Regularization Loss

3. Latent variable is pass

2. Inference model tries to generation model.
make posterior close to the @
prior of generation model

NN NN b+
sampling samlpling
]
1 1
v
'1- Input is fed to @ @ 4. Generation model tries to
inference model reconstruct the input data

30
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® usage:
O compressed image representation
o reward calculation - Euclidean
distance between latent vectors
o goal generation - unsupervised 2 Component TSNE
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Connecting Vision,
Language and
Motorics
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Compositional
Actions

e inputs: natural language command, scene image
e output: robot motion

“Align all red things.

e T = “’@

/ r oﬁ?’\ﬁ /..P' o@i.i\
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Compositional Actions

INITIAL

Assembly

VISUAL SUBSYSTEM

INSTANCE WISE SEMANTIC SEGMENTATIOIV I

e

SEQUENTIAL ASSEMBLY

2

oy N 4 4
e D[>_..' :iozz.

STATE

MOTORICS SUBSYSTEM

PICK bPLACEb PICK hPLACE

NEURAL MODULE NETWORK

A

PICK [27, 3, 5]
PLACE [19, 12, 5]
PICK [14, 1, 5]
ROTATE [0.5]

Y

INITIAL GOAL
cube [27,3,5] cube 19,12, 5)
s =
vongle f12.3:3] o 1503
sphere [15. 4. 4] ap:?ra (15, 4, 4]
REASONING SUBSYSTEM
SEQUENCE TO SEQUENCE

PLACE [17, 12, 5]
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} Conclusion

F
e l|earning individual motor skills (reach, push, pull, rotate...)
e chaining learned action primitives based on natural
language command/goal image and scene image
o compositional
o explainable?
o image / sentence representation using a variational
autoencoder -> possible goal generation
(unsupervised scenario)
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