

Propojování vidění, motoriky a přirozeného jazyka v kognitivní robotice

Mgr. Gabriela Šejnová gabriela.sejnova@cvut.cz Fakulta elektrotechnická, Katedra kybernetiky České vysoké učení technické v Praze

Developmental Robotics Group at CIIRC CTU

Mgr. Michal Vavrečka, Ph.D. Head of the group, Assistant Professor Topics: biologically inspired models, vision & language grounding

Mgr. Karla Štěpánová, Ph.D. Postdoc researcher Topics: imitation learning, language acquisition

Ing. Megi Mejdrechová PhD student FBMI CTU

Nikita Sokovnin Bachelor student FEL CTU

Talk Outline

- our general approach
- vision & language mapping
 - neural module networks
- visuomotor mapping
 - o myGym
 - variational autoencoders
- connecting vision, language and motorics
 - future plans

- cognitive robotics make Al/robots that are autonomous and able to learn, plan complex tasks and communicate
- developmental robotics inspired by human brain development in early childhood
 - motor babbling → object manipulation
 - understanding speech → actively using it

General concepts:

• robots that learn universal skills

General goals:

• compositionality

VS.

General goals:

• explainability

General goals:

• intrinsic motivation & world exploration

Vision & Language Mapping

Visual Question Answering (VQA)

- benchmark task for visual reasoning
- VQA real-world dataset
 - requires understanding of image content?

What color are her eyes? What is the mustache made of?

How many slices of pizza are there? Is this a vegetarian pizza?

VQA dataset - problem

 dataset bias - no image needed, same answers for different questions, jumping to conclusions

Solution: CLEVR dataset

= synthetic, well-annotated dataset with minimal bias

{"color": "green", "size": "large", "rotation": 156.34024, "shape": "cylinder", "3D_coords": [...], "material": "metal", "pixel_coords": [...]}

Questions in CLEVR test various aspects of visual reasoning including **attribute identification**, **counting**, **comparison**, **spatial relationships**, and **logical operations**.

Q: Are there an **equal number** of **large things** and **metal spheres**?

Q: What size is the cylinder that is left of the brown metal thing that is left of the big sphere?

Q: There is a **sphere** with the **same size as** the **metal cube**; is it **made of the same material as** the **small red sphere**?

Q: How many objects are **either small cylinders** or **red** things?

Each question in CLEVR is represented both in **natural language** and as a **functional program**. The functional program representation allows for precise determination of the reasoning skills required to answer each question.

Sample chain-structured question: Filter Filter Unique Relate Filter Unique Query color total total

Sample tree-structured question:

How many cylinders are in front of the tiny thing and on the left side of the green object?

Neural Module Networks

- compositional and explainable
- question translated into a sequence of logical operations
- individual network for each operation

Question: What color is the big

Answer: Red

large

Neural Module Networks

- + compositional
- + interpretable
- logically inconsistent (counting mainly)

Table 1. Comparison of results on the CLEVR dataset. N2NMN is the original model from [9], N2NMN - COUNT and CONSISTENCY refers to our measured data for virtual/real world scenario. The measured values are the percentage of correctly answered questions from given category.

Method	Overall	Count	Shape	Material	Color	Size
LSTM	47.0	42.5	33.2	50.8	12.2	49.9
CNN+LSTM+SA	68.5	52.2	85	88	81	87
NMN	72.1	52.5	84.2	82.6	68.9	80.2
N2NMN	83.7	68.5	90.6	91.5	84.8	93.1
HUMAN	92.6	86.3	94.0	94.0	95.0	97.0
N2NMN - COUNT - VIRTUAL	75.1	81.3	81.2	65.3	79.3	68.5
N2NMN - COUNT - ROBOT	41.9	39	65	39.5	49.9	16
N2NMN - COSISTENCY - VIRTUAL	0.7	-	58.3	46.1	5.0	49.8
N2NMN - CONSISTENCY - ROBOT	0	-	48.7	20.5	0	5.1

Improving Consistency

- trained on custom, systematic set of questions for each image (How many...?)
- trained on original CLEVR dataset (CLEVR-COUNT) and adapted GYM dataset (GYM-COUNT)
- tested also on real-world data

Fig. 2. Comparison between the datasets used in our study. The original CLEVR dataset (*left*) with fixed viewport, a sample from our nine viewport dataset generated using MuJoCo OpenAI environment and Unity render (*center*) and an example of real-world scenes collected by IIWA Kuka LBR 7 robotic manipulator (*right*).

Improving Consistency

 retraining on our adapted version of CLEVR (COUNT dataset) increased accuracy and consistency for counting
5 objects[all]
3 shape[sphere]
1 shape[cube]
2 shape[cylinder

Train	Test	Count	Count	Count color
		objects	shapes	
CLEVR	COUNT	64.5 (56.1)	94.9 (57.1)	99.6 (62.9)
CLEVR	GYM(3)	69.5 (35.6)	95.8 (63.1)	92.2 (37.6)
CLEVR	ROBOT(3)	51.2 (17.2)	84.5 (41.1)	87.3 (19.0)
COUNT	COUNT	99.6 (97.4)	98.4 (97.5)	100 (99.4)
COUNT	GYM(3)	97.0 (87.8)	99.1 (95.6)	98.4 (88.9)
COUNT	ROBOT(3)	85.9 (55.2)	90.0 (71.8)	95.2 (64.4)

Sejnova et al., 2019

Visuomotor Mapping

myGym

- modular toolkit for visuomotor robotic tasks
- real-time simulation with PyBullet Physics
- modular across workspaces, robots, tasks, reward types, objects and baselines
- deep reinforcement learning of (visuo)motor skills supervised, semi-supervised and unsupervised

https://github.com/incognite-lab/myGym

myGym

• robots:

Robot	Туре	Gripper	DOF
Kuka IIWA	arm	magnetic	7
Franka-Emica	arm	two finger	6
Jaco arm	arm	two finger	6
UR-3	arm	tactile gripper	6
UR-5	arm	tactile gripper	6
UR-10	arm	tactile gripper	6
Gummiarm	arm	passive palm	6
Reachy	arm	passive palm	8
Leachy	arm	passive palm	8
ReachyLeachy	dualarm	passive palms	16
ABB Yumi	dualarm	two finger	24
Pepper	humanoid		-
Thiago	humanoid	-	-
Atlas	humanoid	=	

myGym

- manipulation tasks:
 - o reach
 - o push
 - pick and place
 - throw
 - o catch
 - navigate...

myGym

- RL network baselines:
 - **PPO**
 - **PPO2**
 - SAC
 - HER
 - TRPO
 - DDPG
 - o ...

myGym

- RL network baselines:
 - PPO
 - PPO2
 - SAC
 - HER
 - TRPO
 - DDPG
 - o ...

myGym

- pretrained visual networks
 - YOLACT convolutional network for instance segmentation
 - detected objects positions observation and reward calculation

myGym

- pretrained visual networks
 - YOLACT convolutional network for instance segmentation
 - possible to train on own dataset code for generation included

myGym

- pretrained visual networks
 - variational autoencoder (VAE) a probabilistic version of autoencoders

 continuous latent space - possible to generate new samples

source

- VAEs can generate new data
 - only in case the latent space is regularised (organised)
- what is **regularity**?
 - completeness and continuity of the latent space

- training process we maximize the Evidence Lower Bound (ELBO)
 - ELBO $L^{\sim}(x; \theta, \varphi)$ equals to $\mathbb{E}_{z \sim q(z \mid x)} \left[\log p(x \mid z) \right] \mathrm{KL}(q(z \mid x) \parallel p(z))$
 - 1st term: Reconstruction Loss
 - 2nd term: Regularization Loss

- usage:
 - compressed image representation
 - reward calculation Euclidean distance between latent vectors
 - goal generation unsupervised learning

Connecting Vision, Language and Motorics

Compositional Actions

- inputs: natural language command, scene image
- output: robot motion

Compositional Actions

Conclusion

- learning individual motor skills (reach, push, pull, rotate...)
- chaining learned action primitives based on natural language command/goal image and scene image
 - compositional
 - explainable?
 - image / sentence representation using a variational autoencoder -> possible goal generation (unsupervised scenario)

References

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D., Zitnick, C. L., & Parikh, D. (2015). Vqa: Visual question answering. In *Proceedings of the IEEE international conference on computer vision* (pp. 2425-2433).

R. Hu, J. Andreas, M. Rohrbach, T. Darrell, K. Saenko, *Learning to Reason: End-to-End Module Networks for Visual Question Answering*. in ICCV, 2017.

Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Lawrence Zitnick, C., & Girshick, R. (2017). Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 2901-2910).

Mascharka, D., Tran, P., Soklaski, R., & Majumdar, A. (2018). Transparency by design: Closing the gap between performance and interpretability in visual reasoning. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 4942-4950). Sejnova, G., Tesar, M., & Vavrecka, M. (2018). Compositional models for VQA: Can neural module networks really count?. *Procedia computer science*, *145*, 481-487.

Sejnova, G., Vavrecka, M., Tesar, M., & Skoviera, R. (2019, November). Exploring logical consistency and viewport sensitivity in compositional VQA models. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2108-2113). IEEE.